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 amill et al. (2006, hereafter HWM) present  
 a very interesting way to develop objective  
 forecasts of surface weather variables. Basically, 
this consists of running some numerical model for a 
long sample period and developing statistical relation-
ships between the weather elements and the archived 
output. The specific statistical method they present is 
an application of analogs in a model output statistics 
(MOS) framework; another method is presented in 
a similar paper by Hamill et al. (2004). They also 
suggest the forecasts, which they call “reforecasts,” 
can be used to diagnose model bias and to study 
predictability.

The primary intent of the authors is“to stimulate 
a serious discussion about the value of reforecasts.” 
I do not want to disappoint the authors and offer 
this as one “serious discussion.” It is not meant to be 
critical, although I will present another point of view 
on some aspects.

The crucial question is whether a long record—
here 25 yr—of a frozen model with appropriate initial 
conditions run at a lower resolution than the parent 
model, for economy, is of more use than a shorter 
record—maybe 5 yr—of an operational model that 
has possibly undergone some modest evolution 
over the period of record. I believe there are two 
main related considerations in trying to answer that 
question:

1) what is the ultimate purpose of the user of the 
reforecasts (e.g., diagnosing operational model 
behavior, studying predictability, making opera-
tional forecasts), and

2) can the stripped-down model furnish results 
competitive with an operational model?

Only by running a series of tests could the answer to 
2) be determined, and even then it would only apply to 
the specific situation. It is possible that a long sample of 
low-resolution reforecasts would be more appropriate 
than a shorter sample of operational model forecasts 
for short-range forecasting than for longer range, or 
vice versa. For instance, the reforecast model will 
undoubtedly give good forecasts for the first day or 
two at the resolution at which it is run, but that reso-
lution may not be optimal for short-range forecasts. 
For projections of a week or two, the resolution of the 
reforecasts would be quite sufficient for the predictable 
detail, but the model might not be accurate enough; for 
example, the wave speeds might suffer. HWM do not 
really address this question. They show results from 
a particular postprocessing technique for reforecasts, 
but only compare them to unpostprocessed National 
Centers for Environmental Prediction (NCEP) results 
(I do not consider just computing relative frequencies 
of the event from raw ensemble output postprocessing 
in the sense the term is usually used).

HWM have utilized two reanalysis datasets, the 
NCEP–National Center for Atmospheric Research 
(NCAR) global analysis (Kalnay et al. 1996) to 
initialize the NCEP Medium-Range Forecast (MRF) 
model run at T62 spectral resolution with 28 vertical 
levels (the same resolution at which the analyses were 
made), and the 32-km North American Regional 
Reanalysis (NARR; Mesinger et al. 2006) of precipita-
tion data as the predictand dataset. While this paper 
is only one example of how a statistical system can be 
built from model data, if a “weather” forecast at pro-
jections under, say, 3 days is desired, the 32-km data 
of NARR cannot be considered of fine enough resolu-
tion to resolve “local variations of rainfall” (HWM, 
p. 38) or permit “the extraction of small scale detail” 
(HWM, p. 39) in today’s world of gridded forecasts 
of 1.25- to 5-km resolution (Glahn and Ruth 2003). 
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We at the Meteorological Development Laboratory 
are finding that terrain features at 5 km are not of 
sufficient detail in rugged terrain to meet the needs 
of Weather Forecast Offices of the National Weather 
Service. Also, in making detailed statistical weather 
forecasts, it is not obvious that the predictand should 
be an analysis rather than the actual observations. 
However, such an analysis may be adequate and 
appropriate for longer-range predictions if finescale 
detail is not needed.

As with any statistical forecast system, several 
decisions have to be made in the course of development. 
For instance, HWM used a 91-day window in finding 
analogs, and the number of analogs to use in the final 
step of determining a mean or distribution has to 
be decided. After the system has been defined and 
forecasts made for the period of record, skill measures 
can be computed. According to HWM’s Fig. 7, a 24-yr 
record of data is always better than a shorter one, the 
amount depending on the projection and the number 
of analogs. At 7 days there is not much difference, 
especially between a 12- and 24-yr record. Also, it 
appears that the best number of analyses varies with 
projection and number of years in the ensemble. In 
a way, it is perplexing that 75 analyses give higher 
skill at 7 days than a lesser number when only 3 yr of 
data are used (presumably 91 × 3 = 273 cases to chose 
from), but this possibly relates to the lack of fore-
castable detail at that projection. The more analogs 
chosen, the less some of them will resemble the actual 
forecast patterns, and that will tend to “spread” the 
precipitation (in this case) and make the forecast less 
specific. (I suppose in the caption “ensembles of sizes” 
is another use in the paper of “ensembles,” which 
means “number of analogs.”)

HWM mention (footnote 2, p. 36) “slight disconti-
nuities” at the boundaries of the tiles (the local analog 
areas). We have found that techniques that use regions 
in which the same statistics have been applied may 
produce discontinuities that are unacceptable as a 
gridded product. This is a basic problem that must 
be addressed, now that many forecast products are 
displayed graphically (map form) at high resolution. 
There is no magic bullet; there is usually a trade-off 
between smoothing out wanted detail along with 
nonmeteorological discontinuities and noise. Hamill 
and Whitaker (2006) have now demonstrated one 
possibility that shows promise; we are investigating 
others.

HWM show results in their Fig. 5 and discuss the 
Brier skill score (BSS) without making it clear that 
the skill is relative to climatic relative frequencies. 
Equation (1) is shown, but it is not apparent how 

the calculation is made, and reference is made to an 
unpublished paper. Also perplexing is the statement 
concerning Fig. 8, “In general, the BSS tended to be 
smaller in drier regions, where the reference climatol-
ogy is more skillful.” How can climatology be more 
skillful, or skillful at all, if the same climatology is 
used as a reference? It is true that the raw Brier scores 
are smaller (better) in drier regions, as is the Brier 
score for climatology, and there is some tendency for 
the BSS to be smaller in direr regions, but not greatly 
so (Glahn and Jorgensen 1970). The definition of 
“climatology” is extremely important, and even in 
Eq. (1) given by Wilks (2006) the “uncertainty” is 
many times quite gross, being calculated over some 
long period. I assume that however skill was defined 
it was computed in the same way for “NCEP Opnl” 
and “New” (Fig. 5), so the comparison is appropri-
ate. It is not surprising that most any reasonable 
postprocessing technique will improve on raw rela-
tive frequencies from an ensemble. Of more interest 
is whether a specific method improves on existing 
postprocessing methods.

It is interesting that the ensemble mean precipita-
tion forecast pattern was used to find analogs rather 
than using each ensemble member individually in 
some way. HWM state this individual use produced 
less skillful forecasts (footnote, p. 36). This is a rela-
tively minor use of the concept of ensembles of model 
forecasts. The real use of ensembles here is in using 
the reanalysis precipitation patterns.

On the subject of diagnosing operational model 
bias from reforecasts, I question whether a long record 
of a model run at lower resolution, and maybe with 
other differences, than an operational model will 
yield more useful results than a shorter record of the 
“real thing,” even if the real thing had some evolution-
ary changes. Detail like that in HWM’s Fig. 9 does 
need a long sample (bias computed by lead time and 
day with a 31-day window), but how would one know 
that a large portion of the bias was not just due to the 
decrease in model resolution?

The use of principal components (PCs), and to a 
lesser extent canonical correlation, to study telecon-
nections and predictability over large regions had its 
start about as soon as Lorenz (1956) introduced PCs 
into meteorology (Gilman 1957), and there has been 
considerable discussion in the literature, especially 
in the climate community, as to whether physical 
meaning should be attached to the components (e.g., 
Legates 1991, 1993; Richmond 1986, 1993), but much 
of this relates to limited areas, neither global nor 
hemispheric. However, essentially the same cautions 
in the interpretation of the PC “patterns” should also 
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be heeded for the interpretation of canonical correla-
tion analysis (CCA) patterns.

I understand HWM’s method to consist of find-
ing the largest 20 PCs for the ensemble mean week-2 
forecast 500-mb height and the largest 20 PCs of the 
corresponding weekly mean verifying analyses. Then, 
canonical correlation was used to relate these two sets 
of 20 patterns through other patterns. Using 20 PCs to 
represent the forecasts and the analyses retains most, 
but not all, of the original variance of the forecasts 
and analyses. To the extent the process retains the 
variance, the canonical correlation can be considered 
equivalent to relating the original fields.

Physical interpretation of the first pair of canonical 
patterns—predictor and predictand (if they are used 
as such)—is legitimate. HWM show the predictand 
pattern and give the correlation as 0.81. However, for 
any subsequent set of patterns, one should remember 
that 1) the time series constructed from the predic-
tor pattern is uncorrelated with all previous ones 
(this is the same constraint imposed in PC analysis), 
2) the time series constructed from the predictand 
pattern is uncorrelated with all previous ones, and 
3) all predictor time series are uncorrelated with 
all predictand time series, except its pair—the one 
yielding the nonzero correlation (note that the sign 
of the correlation does not matter). This is a severe 
restriction. One can say the ith predictand pattern 
cannot “look much like” any other pattern, even 
though they are not necessarily orthogonal, except 
possibly the ith predictor pattern. Generally, the first 
pattern is very large scale, and succeeding patterns are 
smaller in scale. Statements about “most predictable 
patterns,” except the first, may be misleading when 
they have been produced by CCA analysis. It may be 
that there is a second pattern that is more predictable 
than the second CCA pattern, but it will produce 
a time series correlated with the first. Of course, a 
pattern that is different from the first by a minuscule 
amount would be about as predictable as the first, so 
how does one find the second and succeeding ones? 
CCA has required the time series to be uncorrelated. If 
one truly wants physically meaningful or predictable 
patterns, some method, such as that used by Wallace 
and Gutzler (1981), may be more appropriate. Principal 
components can be rotated to give more physically 
meaningful patterns (see, e.g., Richmond 1986 and 
Horel 1981), but to my knowledge the CCA patterns 
cannot without destroying their paired relationship 
(Wallace et al. 1992, p. 576). Nevertheless, regardless 
of their separate physical interpretation, the canonical 
functions can be used in prediction (e.g., Glahn 1968; 
Barnett and Preisendorfer 1987; Wallace et al. 1992).

Another comment regards the correlations of 
0.6 and 0.7, between the predictor (not shown) and 
predictand patterns (HWM, Fig. 11), which HMW 
characterize as “remarkable.” Large correlations are 
to be expected, because there are so many degrees of 
freedom in finding the fit. Also, a correlation of that 
magnitude does not necessarily imply high predict-
ability for the following two reasons: 1) The reduction 
of variance, a better measure of predictability than the 
correlation, is only 0.36–0.49 of one pattern by the 
other; the relationship is statistically symmetric, and 
2) each predictand pattern explains only a fraction 
of the total original variance. Thus, if pattern 3, for 
instance, explains 15% of the total variance of the pre-
dictand (not stated in HWM), a reasonable amount 
for such datasets (Wallace et al. 1992, p. 807, give 
14% for 15 winters), the variance of the predictand 
over the hemisphere explained by predictor pattern 
3 is only 0.15 × 0.36 = 0.054. That is not a lot, and its 
significance has not been determined. One way of 
thinking about this is that the time series generated by 
the predictor pattern does fairly well in predicting the 
time series stemming from the predictand pattern, 
but the latter pattern may not be strongly related to a 
real-world pattern. Table 1 in Glahn (1968) shows the 
relationship between the canonical correlation coef-
ficients, the associated reductions of variance, and 
the actual variance of the predictand set explained 
for the study presented there. While the datasets 
are substantially different than those in HWM, the 
performance of canonical correlation is essentially 
the same. Equation (47) in that reference defines the 
“composite correlation coefficient” (“CCC”); the con-
tribution to that summation by each pair of canonical 
functions can be considered the “partial composite 
correlation coefficient” (“PCCC”).

To restate, HWM is a very interesting paper and 
may well lead to better interpretative methods. Only 
time will tell whether a long sample of reforecasts 
made at a lower resolution than the operational 
model will play a large role or not. Certainly, when a 
new model, either ensemble or not, is implemented, 
it would be wise to run it on a few years of data prior 
to implementation not only to provide a statistical 
sample for interpretation in terms of local weather, 
but to make sure it performs well over all seasons and 
different ENSO situations.

Perhaps this discussion will stimulate even more.
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